

Effects of Surgery on Brain Structure and Language Skills Among Children with Isolated Cleft of the Lip and/or Palate

HEALTH CARE

Julianna Blackman¹, Amy L. Conrad, PhD, LP, HSP²

¹Harrison High School, Harrison, NY, USA ²Stead Family Department of Pediatrics, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA

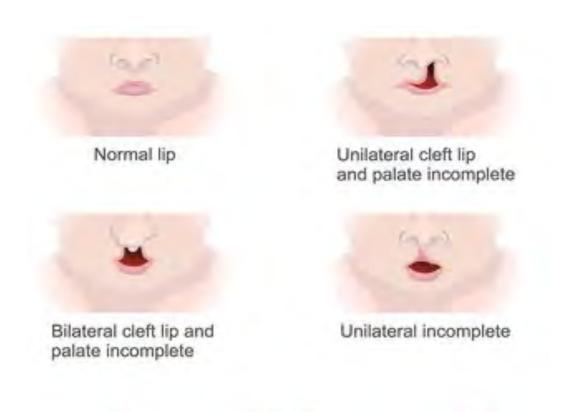
INTRODUCTION

1 in every 1,563 babies born in the U.S. has cleft lip and cleft palate (Mai et al., 2019)

Reading Skills

Isolated cleft of the lip and/or palate (iCL/P) significantly elevates risk of reading impairment -- dependent on type (Conrad, 2018)

Brain Structure


- Differences for oral clefts:
 - Increased frontal gray matter volume -- associated with better reading skills
 - Increased posterior occipital volume -- associated with worse reading skills (Conrad et al., 2021)
- Differences in interhemispheric and cerebellar white matter integrity

Speech/Language

- Quality of speech in males with cleft is associated to structural differences in the cerebellum (Conrad et al., 2010)
- Presence of oral cleft causes differences in speech input skills (Southby et al., 2021)

QUESTION

How does **surgery exposure** impact the **brain structure** and **language skills** of children with oral clefts?

PURPOSE

- Investigate the **neurological impacts** of **surgery** on patients with isolated cleft of the lip and/or palate
- Examine the role of **cleft type** (lip only, lip *and* palate, palate only) on pediatric neuropsychology

(Ameri Surgical Instruments, 2023)

VARIABLES

Independent: Type of oral cleft, number of surgeries

Dependent: Language skills, brain structure

DATA ANALYSIS

- 1. Divided data into 3 groups based on cleft type
- 2. Univariate Analysis of Variance (ANOVA)

†Ratio to whole brain volume; #< iCLP; ^< iCLO

*p < .05; **p < .01; ***p < .001

- 3. Group difference statistics for those with significant F-values
- 4. Pearson Correlations (r)
- 5. Z-score transformation to evaluate significant differences in correlation strengths

RESULTS										
Table 1. Univariate Analysis of Variance and Group Difference Statistics		<u>iCLO</u> <u>iCLP</u> N = 6 N = 11		<u>iCPO</u> N = 10						
		Mean (SD)	Mean (SD)	Mean (SD)	F	Sig.				
Age		10.21 (1.06)	10.06 (1.23)	11.01 (.85)	.785	.465				
Surgeries	Total Number	3.00 (1.67)#	6.08 (3.53)	2.70 (1.77)^#	5.146	.013				
Language Skills	Expressive	107.33 (9.16)	101.17 (15.37)	101.46 (13.47)	.470	.630				
	Receptive	111.00 (8.83)	107.08 (14.70)	98.57 (13.28)	1.574	.230				
Brain Data: Global	Intracranial Volume (cc ³)	1533511.50 (178891.86)	1523356.75 (120815.30)	1474080.71 (129848.02)	0.598	.557				
	Whole Brain (cc³)	1279909.71 (110351.16)	1380139.46 (92985.82)	1350161.84 (102787.26)	1.991	.155				
Brain Data: Regional	Cerebrum [†]	0.88 (0.04)	0.89 (0.02)	0.87 (0.03)	1.476	.245				
	Cerebellum †	0.11 (0.01)	0.10 (0.01)	0.11 (0.01)	2.406	.108				
	Frontal [†]	0.38 (0.03)	0.37 (0.03)	0.37 (0.03)	0.205	.816				
	Parietal †	0.20 (0.01)	0.20 (0.01)	0.19 (0.02)	0.990	.384				
	Temporal [†]	0.17 (0.01)	0.17 (0.02)	0.17 (0.02)	0.234	.793				
	Occipital [†]	0.10 (0.01)	0.10 (0.01)	0.10 (0.01)	1.251	.301				
Brain Data: Language- Specific ROIs	Broca's Area†	0.02 (0.00)	0.02 (0.00)	0.02 (0.00)	0.194	.824				
	Wernicke's Area†	0.01 (0.00)	0.01 (0.00)	0.02 (0.00)	0.013	.987				
	Angular Gyrus †	0.04 (0.01)	0.03 (0.00)	0.03 (0.00)	0.478	.625				

Table 2. Pearson Correlations (r) and Differences between Groups		iCLO			<u>iCLP</u>		<u>iCPO</u>			Sig. Group Differences				
		Surgeries	urgeries Exp.		Surgeries	Exp.	Rec.	Surgeries	Exp.	Rec.	Var.	Groups	Z	p
Language Skills	Expressive	.091	-	*	.542	4	*	511		*	#S	iCLP > iCPO	2.26	.024
	Receptive	.000	40	*	.494	140		217	- 1		4		- 5	- 4
Brain Data: Global	ICV (cc3)	639	142	.117	026	.781**	.725*	.207	.081	374	-	***	ĪŒ.	1
	Whole Brain	.474	.500	.360	065	.875***	.819**	137	.121	498	Exp.	iCLP > iCPO	2.38	.017
	(cc ³)										Rec.	ICLP > iCPO	2.51	.012
Brain Data:	Cerebrum	167	.042	.421	043	.487	.450	.641	.034	.355	-			- Da
	Cerebellum	290	502	626	020	831**	787**	483	300	540				I be
	Frontal	.193	121	.180	.261	.425	.457	.322	.159	246		124	74	1-0
	Dadatat	737	118	009	149	513	595	.149	343	.717	Rec.	iCPO > iCLP	2.34	.019

Regional -.255 -.101 -.738** .560 Rec. iCLP > iCPO 2.26 .024 .054 -.074 -.513 -.714* .138 Temporal .143 #S iCPO > iCLO 2.32 .021 -.213 .024 -.035 -.178 -.248 -.170 Occipital .280 -.213 -.212 -.288 .102 .388 -.386 -.384 .114 Broca's **Brain Data** .485 Exp. | iCLO > iCPO | 2.05 | .040 -.365 -.705 -.007 -.442 .277 .124 Wernicke's Specific -.259 -.139 -.120 -.156 .250 .000 .114 Ang. Gyrus

DISCUSSION

Conclusions

- Number of surgeries did **not** have a strong impact on language skills or brain structure
- There was **not** a strong relationship between language skills and brain structure in participants with iCLO and iCPO
- Significant relationships between language skills and global/regional brain data among iCLP participants

Limitations

- Small sample size
- Did not use Bonferroni correction
- Only one variable for surgery might have been overshadowed by other surgery variables or not the most accurate predictor

FUTURE RESEARCH

- Larger sample size
- Different method for classifying the cleft type (unilateral vs bilateral cleft)
- Impact of sex on neurological effects
- Prevention methods

ACKNOWLEDGEMENTS

Special thanks to Dr. Amy Conrad for her mentorship and support, the Conrad Neurodevelopment Lab for making this research possible, and the Secondary Student Training Program and Belin-Blank Center at the University

This study was supported by K23DE024511 (NIH/NIDCR).

of lowa for providing this research opportunity.

REFERENCES

Ameri Surgical Instruments. (2023). Understanding cleft lip and palate: what to expect before, during, and after the procedure [Illustration]. Ameri Surgical Instruments Inc. https://www.amerisurgicalinstruments.com/blogs/news/understanding-cleft- <u>lip-and-palate-what-to-expect-before-during-and-after-the-procedure</u>

Conrad, A. L. (2018). Are predictors of reading impairment in isolated cleft similar to those in idiopathic dyslexia? Annals of Dyslexia, 69(2), 153-165. https://doi.org/10.1007/s11881-018-00166-2

Conrad, A.L., Dailey, S., Richman, L., Canady, J., Karnell, M.P., Axelson, E., & Nopoulos, P. (2010) Cerebellum structure differences and relationship to speech in boys and girls with nonsyndromic cleft of the lip and/or palate. The Cleft Palate-Craniofacial Journal: Official Publication of the American Cleft Palate-Craniofacial Association, 47(5), 469–475. https://doi.org/10.1597/08-228

Conrad, A. L., Kuhlmann, E., van der Plas, E., & Axelson, E. (2021). Brain structure and neural activity related to reading in boys with isolated oral clefts. Child Neuropsychology, 27(5), 621–640. https://doi.org/10.1080/09297049.2021.1879765

Mai, C. T., Isenberg, J. L., Canfield, M. A., Meyer, R. E., Correa, A., Alverson, C. J., Lupo, P. J., Riehle-Colarusso, T., Cho, S. J., Aggarwal, D., & Kirby, R. S. (2019). National population-based estimates for major birth defects, 2010–2014. Birth Defects Research, 111(18), 1321-1447. https://doi.org/10.1002/bdr2.1589

Southby, L., Harding, S., Phillips, V., Wren, Y., & Joinson, C. (2021). Speech input processing in children born with cleft palate: A systematic literature review with narrative synthesis. International Journal of Language & Communication Disorders, 56(4), 668-693. https://doi.org/10.1111/1460-6984.12633